Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The integration of computing with memory is essential for distributed, massively parallel, and adaptive architectures such as neural networks in artificial intelligence (AI). Accelerating AI can be achieved through photonic computing, but it requires nonvolatile photonic memory capable of rapid updates during on-chip training sessions or when new information becomes available during deployment. Phase-change materials (PCMs) are promising for providing compact, nonvolatile optical weighting; however, they face limitations in terms of bit precision, programming speed, and cycling endurance. Here, we propose a novel photonic memory cell that merges nonvolatile photonic weighting using PCMs with high-speed, volatile tuning enabled by an integrated PN junction. Our experiments demonstrate that the same PN modulator, fabricated via a foundry-compatible process, can achieve dual functionality. It supports coarse programmability for setting initial optical weights and facilitates high-speed fine-tuning to adjust these weights dynamically. The result shows a 400-fold increase in volatile tuning speed and a 10,000-fold enhancement in efficiency. This multifunctional photonic memory with volatile and nonvolatile capabilities could significantly advance the performance and versatility of photonic memory cells, providing robust solutions for dynamic computing environments.more » « less
-
We propose a survival analysis approach for discovering and characterizing user behavior and risks for lending protocols in decentralized finance (DeFi). We demonstrate how to gather and prepare DeFi transaction data for survival analysis. We illustrate our approach using transactions in Aave, one of the largest lending protocols. We develop a DeFi survival analysis pipeline that first prepares transaction data for survival analysis through the selection of different index events (or transactions) and associated outcome events. Then we apply survival analysis statistical and visualization methods modified for competing risks when appropriate, such as Kaplan–Meier survival curves, cumulative incidence functions, Cox hazard regression, and Fine-Gray models for sub-distribution hazards to gain insights into usage patterns and risks within the protocol. We show how, by varying the index and outcome events as well as covariates, we can use DeFi survival analysis to answer questions like “How does loan size affect the repayment schedule of the loan?”; “How does loan size affect the likelihood that an account gets liquidated?”; “How does user behavior vary between Aave markets?”; “How has user behavior in Aave varied from quarter to quarter?” The proposed DeFi survival analysis can easily be generalized to other DeFi lending protocols. By defining appropriate index and outcome events, DeFi survival analysis can be applied to any cryptocurrency protocol with transactions.more » « less
-
The emerging decentralized financial ecosystem (DeFi) is comprised of numerous protocols, one type being lending protocols. People make transactions in lending protocols, each of which is attributed to a specific blockchain address which could represent an externally-owned account (EOA) or a smart contract. Using Aave, one of the largest lending protocols, we summarize the transactions made by each address in each quarter from January 1, 2021, through December 31, 2022. We cluster these quarterly summaries to identify and name common patterns of quarterly behavior in Aave. We then use these clusters to glean insights into the dominant behaviors in Aave. We show that there are three kinds of keepers, i.e., a specific type of users tasked with the protocol’s governance, but only one kind of keeper finds consistent success in making profits from liquidations. We identify the largest-scale accounts in Aave and the highest-risk kinds of behavior on the platform. Additionally, we use the temporal aspect of the clusters to track how common behaviors change through time and how usage has shifted in the wake of major events that impacted the crypto market, and we show that there seem to be problems with user retention in Aave as many of the addresses that perform transactions do not remain in the market for long.more » « less
-
Feedback is a crucial factor in mathematics learning and instruction. Whether expressed as indicators of correctness or textual comments, feedback can help guide students’ understanding of content. Beyond this, however, teacher-written messages and comments can provide motivational and affective benefits for students. The question emerges as to what constitutes effective feedback to promote not only student learning but also motivation and engagement. Teachers may have different perceptions of what constitutes effective feedback utilizing different tones in their writing to communicate their sentiment while assessing student work. This study aims to investigate trends in teacher sentiment and tone when providing feedback to students in a middle school mathematics class context. Toward this, we examine the applicability of state-of-the-art sentiment analysis methods in a mathematics context and explore the use of punctuation marks in teacher feedback messages as a measure of tone.more » « less
-
Feedback is a crucial factor in mathematics learning and instruction. Whether expressed as indicators of correctness or textual comments, feedback can help guide students’ understanding of content. Beyond this, however, teacher-written messages and comments can provide motivational and affective benefits for students. The question emerges as to what constitutes effective feedback to promote not only student learning but also motivation and engagement. Teachers may have different perceptions of what constitutes effective feedback utilizing different tones in their writing to communicate their sentiment while assessing student work. This study aims to investigate trends in teacher sentiment and tone when providing feedback to students in a middle school mathematics class context. Toward this, we examine the applicability of state-of-the-art sentiment analysis methods in a mathematics context and explore the use of punctuation marks in teacher feedback messages as a measure of tone.more » « less
-
Background: Teachers often rely on the use of open‐ended questions to assess students' conceptual understanding of assigned content. Particularly in the context of mathematics; teachers use these types of questions to gain insight into the processes and strategies adopted by students in solving mathematical problems beyond what is possible through more close‐ended problem types. While these types of problems are valuable to teachers, the variation in student responses to these questions makes it difficult, and time‐consuming, to evaluate and provide directed feedback. It is a well‐studied concept that feedback, both in terms of a numeric score but more importantly in the form of teacher‐authored comments, can help guide students as to how to improve, leading to increased learning. It is for this reason that teachers need better support not only for assessing students' work but also in providing meaningful and directed feedback to students. Objectives: In this paper, we seek to develop, evaluate, and examine machine learning models that support automated open response assessment and feedback. Methods: We build upon the prior research in the automatic assessment of student responses to open‐ended problems and introduce a novel approach that leverages student log data combined with machine learning and natural language processing methods. Utilizing sentence‐level semantic representations of student responses to open‐ended questions, we propose a collaborative filtering‐based approach to both predict student scores as well as recommend appropriate feedback messages for teachers to send to their students. Results and Conclusion: We find that our method outperforms previously published benchmarks across three different metrics for the task of predicting student performance. Through an error analysis, we identify several areas where future works maybe able to improve upon our approach.more » « less
-
Pardalos, Panos; Kotsireas, Ilias; Guo, Yike; Knottenbelt, William (Ed.)We propose a decentralized finance (DeFi) survival analysis approach for discovering and characterizing user behavior and risks in lending protocols. We demonstrate how to gather and prepare DeFi transaction data for survival analysis. We demonstrate our approach using transactions in AAVE, one of the largest lending protocols. We develop a DeFi survival analysis pipeline which first prepares transaction data for survival analysis through the selection of different index events (or transactions) and associated outcome events. Then we apply survival analysis statistical and visualization methods such as median survival times, Kaplan–Meier survival curves, and Cox hazard regression to gain insights into usage patterns and risks within the protocol. We show how by varying the index and outcome events, we can utilize DeFi survival analysis to answer three different questions. What do users do after a deposit? How long until borrows are first repaid or liquidated? How does coin type influence liquidation risk? The proposed DeFi survival analysis can easily be generalized to other DeFi lending protocols. By defining appropriate index and outcome events, DeFi survival analysis can be applied to any cryptocurrency protocol with transactions.more » « less
-
Abstract Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.more » « less
An official website of the United States government
